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ABSTRACT At the present time, largely because of a
breakthrough in radiology called com uted tomography, the
attenuation of x-ray beams is measured in extremely sensitive
quantitative ways, and the information from many x-ray sources
is assembled and analyzed on a computer. In this situation
mathematics can make significant contributions concerning
the nature of the information conveyed by x-rays from many
sources, the extent to which this information determines the
object x-rayed, suitable configurations of sources, methods for
using the data to build a detailed reconstruction of the object,
etc. This article announces results on these topics for the di-
vergent x-ray beam. The three-dimensionally divergent beam,
or cone beam, presents new problems that do not appear in the
two-dimensional, or fan beam, case.

Until recently there was little need for mathematics in radiol-
ogy. Films were examined individually, and by eye, and
mathematics had little to offer to the procedure. The picture
changed radically in the late 1960s with a breakthrough called
computed tomography, in which the attenuation of the x-ray
beam is measured in an extremely sensitive quantitative way,
and the information from many sources is assembled and an-
alyzed on a computer (1). In this new situation mathematics can
make significant contributions concerning the nature of the
total information conveyed by x-rays from many sources, the
extent to which this information determines the object x-rayed,
suitable configurations of sources, methods for using the data
to build a detailed reconstruction of the object, etc.

In the initial device for computed tomography, the cele-
brated EMI scanner (1), a parallel x-ray beam was used, and
two-dimensional cross sections of the object were reconstructed.
The mathematical theory of the parallel beam x-ray transform
is developed in refs. 2 and 3. In the current second generation
of scanners two-dimensional cross sections are still recon-
structed, but a two-dimensionally divergent x-ray beam is used
in place of the parallel beam in order to allow faster scan
times.

At the present time there has arisen the need for dealing with
a three-dimensionally divergent beam because of the extremely
fast scan times required in the reconstruction of moving objects.
A problem of major interest, for example, is the three-dimen-
sional reconstruction of a beating heart. With human patients
the x-ray data for such reconstructions must be collected during
the fraction of a second in which heart movement is insignifi-
cant. This is impracticable with a succession of two-dimen-
sionally divergent beams.

In the two-dimensional case, practical reconstruction for-
mulas for the divergent beam transform have been obtained
by falling back upon known formulas for the parallel beam
transform (4, 5), but even in the two-dimensional case very little
has been known of the required mathematical theory. In the

three-dimensional case, even such formulas have not been
known. Moreover, the three-dimensional case differs radically
from the former. From a given source point it is feasible to x-ray
full two-dimensional cross sections of a three-dimensional
object, but it is normally out of the question to x-ray the full
three-dimensional object itself. The beam must be coned down
to the region of interest. Thus, the three-dimensional problem
has a different nature, in that only partial information is
available from each x-ray source.
The purpose of this note is to describe the beginnings of the

required mathematical theory of the divergent beam x-ray
transform. The specific matters addressed are as follows: uni-
queness-a discussion of configurations of sources and cone
beams for which the measured x-ray data determine the object
uniquely; reconstruction procedures; and measured re-
gions-a discussion of the severe limitations on the region x-
rayed if each point in this region is to be seen from three or more
sources. The field still abounds with open problems of both
mathematical and practical importance.

MATHEMATICAL SETTING
The discussion is set in the n-dimensional space Rn so that
separate statements are not needed for dimensions 2 and 3.
Mathematically, the divergent beam x-ray transform or ra-
diograph of a function f on Rn is the function DOJf defined
by

Y7af(O) = f f(a + to)dt forO ESn-e [1]

in which S"-' = {x e Rn: IxI = 1} is the unit sphere in Rn.
Physically, the functionf is the density function of the object
x-rayed, so that DJ(O) is the total mass of the object along the
half line with origin at the source a and direction 0. In practice
this number is determined by measuring the attenuation of the
x-ray beam along this half line. The basic problem is the ex-
traction of information about the unknown density function
f from information about certain of the radiographs Daf from
sources a lying in. a source set A. Throughout the article it is
assumed that the density functionf is square integrable and that
it vanishes outside a fixed bounded open set 0 with closure Q
and closed convex hull 0.

In the three-dimensional case the beam is usually coned down
to a particular region of interest. For each source point a there
is chosen a cone Ca with vertex a, and the attenuation is mea-
sured only along half lines in Ca. If

Sa = (Ca - a) ( Sn-l [2]
is the corresponding set of directions, then the measured x-ray
data consist of the numbers DOaf(0), for a in the source set A and
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Ca _
-

o in the chosen set of directions Sa. A point in Ca n Q is said to
be seen from the source a. The set

Onm = U (Can (2),
acA

[3]

consisting of points seen from at least one source, is the mea-
sured region. Outside the measured region, alterations in the
density function produce no changes in the measured x-ray
data.
The subject of this note is the extraction of information about

the unknown density function from the measured x-ray
data.

MATHEMATICAL RESULTS
As stated above, it is assumed throughout that the density
function f is square integrable and that it vanishes outside a
fixed bounded open set ( with closure ( and closed convex hull
Q. Theorems additional to the ones stated, and all of the proofs,
are given in ref. 6.

Uniqueness. The basic uniqueness problem is to determine
the configurations of source sets A and corresponding sets of
directions Sa (or cones Ca) which guarantee that, if two density
functions have identical measured x-ray data, then the functions
themselves must be identical on some region of interest Qo. The
region go must be contained in the measured region Qm, be-
cause the functions and the data are independent outside Qm.
When the full object can be x-rayed from each source there is
a very strong uniqueness theorem.
THEOREM 1. (Full information from each source) Let A be

any infinite set of sources bounded away from U. If Jaf(O)
= YDg(G) for each source a and each direction 0, then f = g on
Qm = Q.
When only part of the object can be x-rayed from each

source, as is usually the case in dimension 3, the situation is
peculiar. Two examples are given in Figs. 1 and 2. The basic
uniqueness problem is not solved in general, but the following
theorem provides a special case that is feasible in practice. Figs.
2 and 3 contain two- and three-dimensional examples.
THEOREM 2. (Partial information from each source) Let C

be an open cone with vertex Q, and let A, the closure of the
source set A, be a rectifiable arc outside ( such that for each
half line e in C there is a point a e Xfor which a + e misses
Q. Let Sa = C n Sn-1. If O af(@) = DJJag(0) for each source a and
each direction 0 e S., then f = g on Um= (A + C) Ci = (A
+QC) n (.
The relevant situation for practice is of course that of a finite

number of sources. For parallel beam x-rays it has been shown
that objects with identical shapes and identical radiographs
from any given finite number of directions can still differ in a
completely arbitrary way on any interior compact set (3). At
the present time somewhat weaker theorems are known for
divergent beam x-rays (6), but these weaker theorems still imply
a very high degree of nonuniqueness (and the stronger analog
must certainly be true). Practical implications of the interplay
between uniqueness and nonuniqueness are discussed briefly
below.

Reconstruction. The reconstruction problem is the problem
of giving a constructive procedure for recovering the unknown
density function f on the region of interest from its measured
x-ray data. Because of the nonuniqueness, such reconstructions
cannot be achieved exactly with a finite number of sources,
even in theory. However, because the uniqueness theorems
require only a countably infinite set of sources, they provide
the possibility of arbitrarily good approximations.
The most convenient setting for the problem is the Hilbert

space L&(Q) composed of square integrable functions vanishing

I

I

A = Source
circle

a

f(x) = p'(s)(s2 X 2)-1/2dS
FIG. 1. Simulated cross section of the chest 1 with the heart no

the region of interest. The source set A is the entire exterior circle. For
each source a, the measured cone Ca is the cone determined by a and
the circle Q1. The measured region %m is all of Q. If 0 and %l are circles
centered at 0 with radii r and rl, and p is any function of one variable
that vanishes outside the interval (r1, r), then the function f defined
above has 0 measured x-ray data, and there is a high degree of non-
uniqueness, even on the region Qo.

outside (2. If the source set A lies outside (, then the set

NA = lU e L2(U):1Jau(0) = 0 for a e A and 0 e Sal

is a closed subspace of this Hilbert space. The closed planef +
NA consists of the functions in Lo(2Q) with the same measured
x-ray data as f. Let PA be the orthogonal projection on this
plane.

In any situation where uniqueness holds on the region of
interest (e.g., Theorems I and 2) the plane f + NA contains
only functions identical to f on this region, and for any g e
Lo2(), PAg is therefore identical to f on the region of interest.
Consequently, the reconstruction problem can be reinterpreted
as the problem of calculating the projection operator PA. If the
source set A is the union of an increasing sequence {As}, then

C

0

FIG. 2. Simulated cross section of the chest (large circle) with the
heart (small circle) the region of interest. For each source a, the
measured cone Ca is the translate a + C of the fixed cone C. The
source set A is either the arc ab or the arc ac. In the first case the
measured region is the region shaded by lines originating on ab, and
in the second it is the entire shaded region. In the first case the density
function is not uniquely determined on the region of interest, as is
shown by the illustrated function f with 0 measured x-ray data. In the
second case the density function is uniquely determined, in accor-
dance with Theorem 2. It is curious that adjunction of the seemingly
irrelevant arc bc entails uniqueness.
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FIG. 3. Vertical plane section through the origin of the two-circle x-ray setup. The three-dimensional picture is obtained by revolving this
one around the z axis. Inspection shows clearly what the measured region would be, and which points in it would be seen from just one source,
if only one of the two source circles were used.

PA is the limit of the PA,, i.e.,
For each g e Lo(Q), PA#g -- PAg in La(w), [4]

as is well known in Hilbert space theory. Thus, the approxi-
mation of PA is reduced to the approximation of the PA, When
A is a countable set the As can be taken to be finite sets, and
approximations can be obtained from finite source sets any time
the union provides uniqueness on the region of interest.
Now let A = la,,---, aMI be a finite set of sources. A con-

structive procedure for approximating PA in terms of the in-
dividual projections Pa,1 is given by a theorem of Halperin
(7):
If Q = PaM* *Pal, then for any g e LO(), Qmg

PAg in L&Q). [5]
Again this is a theorem in abstract Hilbert space adapted to the
present situation.
What remains is the calculation of the projection Pa corre-

sponding to an individual source a. For this an explicit formula
can be given. Let Qao = It > 0:a + tO e Q1 if 0 e Sa, and Q(a,
= if 0 $ Sa, and set

gA a, 0) t It-dt,

and

c(a, 0) = (Oaf(O) - ag(O))/js(a, 0) if 0 e Sa
c(a, O) = 0 if 0 i Sa.

THEOREM 3. For g e L(42), P&g(a + tO) = g(a + tO) + c(a,
-n on (2.

The procedure of choosing an initial guess g and improving
it successively by iteration of the projection formula in Theorem
3 is called the Kacmarz procedure. An analogous procedure for
solving finite systems of linear equations was introduced by
Kacmarz in ref. 8. The parallel beam analog was the recon-

struction procedure used in the original EMI scanner (1, 3).
Regions Measured from Multiple Sources. With the com-

puted tomography scanners in current use, each point of the
measured region is seen from a great many sources, usually
between 150 and 600, depending on the size of the recon-

struction matrix. In the two-dimensional case this does not pose
a problem. In the three-dimensional case, however, when the
number of sources is finite and each point of the measured re-

gion is to be seen from three or more sources, the possible con-
figurations of sources and measured regions become very
limited. In the sample theorem below it is assumed that the
dimension is 3, that the number of sources is finite, and that the
boundary of Om satisfies a very mild smoothness condition
which is always satisfied in practice.
THEOREM 4. (a) If each point of Om is seen from four

noncoplanar sources, then Om is a union ofcomponents of Q;
in particular, (lm = Q if Q is connected.

(b) Suppose that the sources lie in a plane x, and let H be
either of the half spaces determined by 7r. Ifeach point of Om
is seen from three noncolinear sources, then Om n H is a union
of components of Q n H; in particular, Om n H = Q n H if
Q( n H is connected.
Any open set in Rn separates into "connected pieces" called

components; two points belong to the same component if they
can be joined by a path that lies in the given open set. To illus-
trate the theorem, take, as in the case of principal interest, Q to
be the human body. Each point of Q must lie in the component
containing the heart, for, by definition points outside this
component could not receive blood. In accordance with part
a, if each point of the measured region is to be seen from four
noncoplanar sources, then the measured region must be the
entire body. To illustrate part b, suppose that the sources lie in
a horizontal plane approximately through the midsection, and
let H+ be the half space above this plane, and H_ the half space
below, and assume, as in part b, that each point of the measured
region is to be seen from three noncolinear sources. H+ n (Q has
just one component, so if any part of the body above the source
plane is to be measured, then all of it must be measured. H_
In Q has three components (coming from the torso and legs, and
the two arms), and if any part of one of these components is to
be measured, then the entire component must be measured. (In
practice Q is usually a cylinder containing the body, and all sets
have just one component.)

In the case of colinear sources, similar results hold with the
half space H replaced by wedges bounded by planes through
the source line.

DISCUSSION
Uniqueness. Although the nonuniqueness theorems show

that, even in theory, exact reconstructions cannot be achieved
with a finite number of sources, the uniqueness theorems, in-
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volving only a countable number of sources, show that arbi-
trarily good approximations can be. However, the infinite se-
quence {PA}} called for in statement 4 (Reconstruction section)
cannot be computed. Some fixed PA, must be used. Partly on
theoretical and partly on empirical grounds, a reasonable choice
for j can be determined. Nevertheless, no matter how large j
is, the nonuniqueness theorems show that PA~g can differ dra-
matically from f.

In practice the x-ray setup probably should be designed so
that in the limiting case of infinitely many sources uniqueness
does hold, and then a priori information not coming from x-rays
should be introduced into the reconstruction method in order
to combat the nonuniqueness inherent in the finitely many
sources actually used. Examples of the use of a priori infor-
mation can be found in refs. 3, 9, and 10, but much remains to
be done.
On the other hand, if very fast reconstructions are needed

(e.g., if it is desirable that the physician participate in the pro-
cess), it may be useful to compromise with uniqueness. In
particular, an x-ray setup like the one illustrated in Fig. 1 is
attractive because it requires manipulation of a minimum
amount of data, and, indeed, similar setups are now being tried
in computed tomography algorithms (11). With the setup of
Fig. 1 and the reconstructionfo = PAO (the function with cor-
rect measured data and minimum L2 norm), the error function
u = f - fo satisfies

max Iu(x) - u(0)| < CIlf 11L2. [6]
xeflo

Preliminary computations indicate that with reasonable ratios
of the radii of Q, Q1, and go (e.g., 4:2:1), the constant C is very
small. If this is the case, then the error function u is nearly
constant on the region of interest and the lack of uniqueness
does little damage to the reconstruction on this region.

Reconstruction. It is easy to give explicit formulas for the
inverse of the divergent beam x-ray transform (6). The known
formulas, however, require the knowledge of Oaf(O) for all
sources a on the surface of a sphere surrounding the object and
all directions 0 E Sn-l-in practice, therefore, the knowledge
of Jaf(O) for a finite number of sources and directions more
or less uniformly distributed over these spheres. In most two-
dimensional problems this is a satisfactory situation, and nu-
merical implementations of the inversion formulas are now
being used in many of the computed tomography scanners.
[Convolution method (4, 5).]

In three dimensions, however, it is usually necessary to con-
fine the sources to a one-dimensional set, such as an arc or union
of arcs, and to cone the beam down. In this situation inversion
formulas are not known, even in dimension 2, and stable,
practical formulas may well not exist. The Kacmarz method,
in a sense, is independent of the distribution of sources and
measured cones. For any finite set A of sources and measured
cones it always leads to a function PAg with the correct mea-
sured x-ray data, though with bad distribution the convergence
is slow. (See ref. 12.) The Kacmarz method also lends itself to
the incorporation of a priori information. A disadvantage,
however, is that iterative methods apparently are intrinsically
slower than noniterative methods-which was a principal
reason for the switch to the convolution method in the current
scanners. A noniterative inversion procedure, though not an
explicit formula, is contained implicitly in the proof of the
second uniqueness theorem. It is not known whether this pro-
cedure can be implemented effectively in practice.

Regions Measured from Multiple Sources. In the computed
tomography scanners each point of the measured region is seen

from a great many sources. The extent to which this is necessary
for results of uniform high quality has not been determined,
and probably can be determined only by experience. If each
point of the measured region is to be seen from three or more
sources, then in three dimensions the possible source configu-
rations are very limited:

(a) Colinear sources are possible. In this case the measured
region must be effectively the intersection of f with a wedge
bounded by planes through the source line. Uniqueness holds,
but the problem is likely to be rather ill conditioned.

(b) Coplanar sources are possible only if it is feasible to
measure all of fI on one side of the source plane, or if the sources
are effectively colinear, e.g., on a polygonal arc. There is no
evidence available as to whether a plane polygonal arc of
sources can produce a well-conditioned problem.

(c) Strongly noncoplanar sources, configurations in which
each point of the measured region is seen from four nonco-
planar sources, are likely to produce the best-conditioned
problems, but they are possible only when it is possible to
measure the entire region Q.
A practical configuration-in which uniqueness holds, the

measured region is reasonable and each point is seen from many
sources, and the problem is probably well conditioned-may
be the configuration in which the sources are distributed around
two circles. In the typical three-dimensional reconstruction
problem, Q is effectively a vertical cylinder, and the region of
interest go is a slice cut off by the planes z = 1b. Let C be the
cone of half lines in the upper half space z >0 with initial point
o and making an angle a = arctan(b/2) with the horizontal x,
y plane. If the radius of the cylinder Q is 1, let the source set A
consist of the two circles with center 0 and radius 3 in the planes
z = ±b. For sources a in the upper circle, let C. = a -C; and
for sources a in the lower circle, let C. = a + C. With this
configuration the measured region is the slice go of interest,
uniqueness holds on this region, and each point is seen either
from all sources on the upper circle or from all sources on the
lower circle. [The same effect is achieved if the radius of the
source circles is any number r 2 3 and the angle a satisfies b/ (r
- 1) S tan a < 2b/(r + 1).] The two-circle x-ray setup is illus-
trated in Fig. 3.

Figures were prepared by Mrs. Donna Balow of the Biodynamics
Research Unit of the Mayo Clinic.
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